On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the general sum–connectivity co–index of graphs

in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index  is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.

متن کامل

2-Connected graphs with minimum general sum-connectivity index

The general sum-connectivity index of a graph G is χα(G) = ∑ uv∈E(G) (d(u)+d(v)), where d(u) denotes the degree of vertex u ∈ V (G), and α is a real number. In this paper, we show that in the class of graphs G of order n ≥ 3 and minimum degree δ(G) ≥ 2, the unique graph G having minimum χα(G) is K2 + Kn−2 if −1 ≤ α < α0 ≈ −0.867. Similarly, if we impose the supplementary condition for G to be t...

متن کامل

Some new bounds on the general sum--connectivity index

Let $G=(V,E)$ be a simple connectedgraph with $n$ vertices, $m$ edges and sequence of vertex degrees$d_1 ge d_2 ge cdots ge d_n>0$, $d_i=d(v_i)$, where $v_iin V$. With $isim j$ we denote adjacency ofvertices $v_i$ and $v_j$. The generalsum--connectivity index of graph is defined as $chi_{alpha}(G)=sum_{isim j}(d_i+d_j)^{alpha}$, where $alpha$ is an arbitrary real<b...

متن کامل

On the general sum-connectivity index of connected graphs with given order and girth

In this paper, we show that in the class of connected graphs G of order n ≥ 3 having girth at least equal to k, 3 ≤ k ≤ n, the unique graph G having minimum general sum-connectivity index χα(G) consists of Ck and n−k pendant vertices adjacent to a unique vertex of Ck, if−1 ≤ α < 0. This property does not hold for zeroth-order general Randić index Rα(G).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2939510